
Классификация моделей данных
Одними из основополагающих в концепции баз данных являются обобщенные категории «данные» и «модель данных».
Понятие «данные» в концепции баз данных — это набор конкретных значений, параметров, характеризующих объект, условие, ситуацию или любые другие факторы. Примеры данных: Петров Николай Степанович, $30 и т. д. Данные не обладают определенной структурой, данные становятся информацией тогда, когда пользователь задает им определенную структуру, то есть осознает их смысловое содержание. Поэтому центральным понятием в области баз данных является понятие модели. Не существует однозначного определения этого термина, у разных авторов эта абстракция определяется с некоторыми различиями, но тем не менее можно выделить нечто общее в этих определениях.
Модель данных — это некоторая абстракция, которая, будучи приложима к конкретным данным, позволяет пользователям и разработчикам трактовать их уже как информацию, то есть сведения, содержащие не только данные, но и взаимосвязь между ними.
На рис. представлена классификация моделей данных.





На концептуальном уровне определяется понятие схемы БД в терминологии иерархической модели.
Схема иерархической БД представляет собой совокупность отдельных деревьев, каждое дерево в рамках модели называется физической базой данных. Каждая физическая БД удовлетворяет следующим иерархическим ограничениям:
-
в каждой физической БД существует один корневой сегмент, то есть сегмент, у которого нет логически исходного (родительского) типа сегмента;
-
каждый логически исходный сегмент может быть связан с произвольным числом логически подчиненных сегментов;
-
каждый логически подчиненный сегмент может быть связан только с одним логически исходным (родительским ) сегментом.
Сетевая модель данных
Базовыми объектами модели являются:
-
элемент данных;
-
агрегат данных;
-
запись;
-
набор данных,
Элемент данных — то же, что и в иерархической модели, то есть минимальная информационная единица, доступная пользователю с использованием СУБД.
Агрегат данных соответствует следующему уровню обобщения в модели. В модели определены агрегаты двух типов: агрегат типа вектор и агрегат типа повторяющаяся группа.
Агрегат данных имеет имя, и в системе допустимо обращение к агрегату по имени. Агрегат типа вектор соответствует линейному набору элементов данных. Например, агрегат Адрес может быть представлен следующим образом:
-
Адрес
-
Город
-
Улица
-
дом
-
квартира
Агрегат типа повторяющаяся группа соответствует совокупности векторов данных. Например, агрегат Зарплата соответствует типу повторяющаяся группа с числом повторений 12.
-
Зарплата
-
Месяц
-
Сумма
Записью называется совокупность агрегатов или элементов данных, моделирующая некоторый класс объектов реального мира. Понятие записи соответствует понятию «сегмент» в иерархической модели. Для записи, так же как и для сегмента, вводятся понятия типа записи и экземпляра записи.
Следующим базовым понятием в сетевой модели является понятие «Набор». Набором называется двухуровневый граф, связывающий отношением «одии-комногим» два типа записи.
Набор фактически отражает иерархическую связь между двумя типами записей. Родительский тип записи в данном наборе называется владельцем набора, а дочерний тип записи — членом того же набора.
Для любых двух типов записей может быть задано любое количество наборов, которые их связывают. Фактически наличие подобных возможностей позволяет промоделировать отношение «многие-ко-многим» между двумя объектами реального мира, что выгодно отличает сетевую модель от иерархической. В рамках набора возможен последовательный просмотр экземпляров членов набора, связанных с одним экземпляром владельца набора.
Между двумя типами записей может быть определено любое количество наборов: например, можно построить два взаимосвязанных набора. Существенным ограничением набора является то, что один и тот же тип записи не может быть одновременно владельцем и членом набора.
Реляционная модель данных
Реляционная модель является удобной и наиболее привычной формой представления данных в виде таблицы. В отличие от иерархической и сетевой моделей, такой способ представления: 1) понятен пользователю-непрограммисту; 2) позволяет легко изменять схему — присоединять новые элементы данных и записи без изменения соответствующих подсхем; 3) обеспечивает необходимую гибкость при обработке непредвиденных запросов
Одним из основных преимуществ реляционной модели является ее однородность. Все данные рассматриваются как хранимые в таблицах, в которых каждая строка имеет один и тот же формат. Каждая строка в таблице представляет некоторый объект реального мира или соотношение между объектами.
Основными понятиями, с помощью которых определяется реляционная модель, являются следующие: домен, отношение, кортеж, кардинальность, атрибуты, степень, первичный ключ. Соотношение этих понятий иллюстрируется рисунком.
Домен — это совокупность значений, из которой берутся значения соответствующих атрибутов определенного отношения. С точки зрения программирования, домен — это тип данных, определяемый системой (стандартный) или пользователем.
Первичный ключ — это столбец или некоторое подмножество столбцов, которые уникально, т. е. единственным образом определяют строки. Первичный ключ, который включает более одного столбца, называется множественным, или комбинированным, или составным. Правило целостности объектов утверждает, что первичный ключ не может быть полностью или частично пустым.
Остальные ключи, которые можно также использовать в качестве первичных, называются потенциальными или альтернативными ключами.
Внешний ключ — это столбец или подмножество одной таблицы, который может служить в качестве первичного ключа для другой таблицы. Внешний ключ таблицы является ссылкой на первичный ключ другой таблицы. Правило ссылочной целостности гласит, что внешний ключ может быть либо пустым, либо соответствовать значению первичного ключа, на который он ссылается. Внешние ключи являются неотъемлемой частью реляционной модели, поскольку реализуют связи между таблицами базы данных.
Внешний ключ, как и первичный ключ, тоже может представлять собой комбинацию столбцов. На практике внешний ключ всегда будет составным (состоящим из нескольких столбцов), если он ссылается на составной первичный ключ в другой таблице. Количество столбцов и их типы данных в первичном и внешнем ключах совпадают.
Если таблица связана с несколькими другими таблицами, она может иметь несколько внешних ключей.
Модель предъявляет к таблицам следующие требования:
1) данные в ячейках таблицы должны быть структурно неделимыми
2) данные в одном столбце должны быть одного типа;
3) каждый столбец должен быть уникальным (недопустимо дублирование столбцов);
4) столбцы размещаются в произвольном порядке;
5) строки размещаются в таблице также в произвольном порядке;
6) столбцы имеют уникальные наименования.
Концепция реляционной модели определяется следующими двенадцатью правилами.
1. Правило информации. Вся информация в базе данных должна быть предоставлена исключительно на логическом уровне и только одним способом — в виде значений, содержащихся в таблицах.
2. Правило гарантированного доступа. Логический доступ ко всем и каждому элементу данных (атомарному значению) в реляционной базе данных должен обеспечиваться путем использования комбинации имени таблицы, первичного ключа и имени столбца.
3. Правило поддержки недействительных значений. В реляционной базе данных должна быть реализована поддержка недействительных значений, которые отличаются от строки символов нулевой длины, строки пробельных символов, от нуля или любого другого числа и используются для представления отсутствующих данных независимо от типа этих данных.
4. Правило динамического каталога, основанного на реляционной модели. Описание базы данных на логическом уровне должно быть представлено в том же виде, что и основные данные, чтобы пользователи, обладающие соответствующими правами, могли работать с ним с помощью того же реляционного языка, который они применяют для работы с основными данными.
5. Правило исчерпывающего подъязыка данных. Реляционная система может поддерживать различные языки и режимы взаимодействия с пользователем (например, режим вопросов и ответов). Однако должен существовать по крайней мере один язык, операторы которого можно представить в виде строк символов в соответствии с некоторым четко определенным синтаксисом и который в полной мере поддерживает следующие элементы:
• определение данных;
• определение представлений;
• обработку данных (интерактивную и программную);
• условия целостности;
• идентификацию прав доступа;
• границы транзакций (начало, завершение и отмена).
6. Правило обновления представлений. Все представления, которые теоретически можно обновить, должны быть доступны для обновления,
7. Правило добавления, обновления и удаления. Возможность работать с отношением как с одним операндом должна существовать не
только при чтении данных, но и при добавлении, обновлении и удалении данных.
8. Правило независимости физических данных. Прикладные программы и утилиты для работы с данными должны на логическом уровне оставаться нетронутыми при любых изменениях способов хранения данных или методов доступа к ним.
9. Правило независимости логических данных. Прикладные программы и утилиты для работы с данными должны на логическом уровне оставаться нетронутыми при внесении в базовые таблицы любых изменений, которые теоретически позволяют сохранить нетронутыми содержащиеся в этих таблицах данные.
10. Правило независимости условий целостности. Должна существовать возможность определять условия целостности, специфические для конкретной реляционной базы данных, на подъязыке реляционной базы данных и хранить их в каталоге, а не в прикладной программе.
11. Правило независимости распространения. Реляционная СУБД не должна зависеть от потребностей конкретного клиента.
12. Правило единственности. Если в реляционной системе есть низкоуровневый язык (обрабатывающий одну запись за один раз), то должна отсутствовать возможность использования его для того, чтобы обойти правила и условия целостности, выраженные на реляционном языке высокого уровня (обрабатывающем несколько записей за один раз).
Правило 2 указывает на роль первичных ключей при поиске информации в базе данных. Имя таблицы позволяет найти требуемую таблицу, имя столбца позволяет найти требуемый столбец, а первичный ключ позволяет найти строку, содержащую искомый элемент данных.
Правило 3 требует, чтобы отсутствующие данные можно было представить с помощью недействительных значений (NULL).
Правило 4 гласит, что реляционная база данных должна сама себя описывать. Другими словами, база данных должна содержать набор системных таблиц, описывающих структуру самой базы данных.
Правило 5 требует, чтобы СУБД использовала язык реляционной базы данных, например SQL. Такой язык должен поддерживать все основные функции СУБД — создание базы данных, чтение и ввод данных, реализацию защиты базы данных и т. д.
Правило 6 касается представлений, которые являются виртуальными таблицами, позволяющими показывать различным пользователям различные фрагменты структуры базы данных. Это одно из правил, которые сложнее всего реализовать на практике.
Правило 7 акцентирует внимание на том, что базы данных по своей природе ориентированы на множества. Оно требует, чтобы операции добавления, удаления и обновления можно было выполнять над множествами строк. Это правило предназначено для того, чтобы запретить реализации, в которых поддерживаются только операции над одной строкой.
Правила 8 и 9 означают отделение пользователя и прикладной программы от низкоуровневой реализации базы данных. Они утверждают, что конкретные способы реализации хранения или доступа, используемые в СУБД, и даже изменения структуры таблиц базы данных не должны влиять на возможность пользователя работать с данными.
Правило 10 гласит, что язык базы данных должен поддерживать ограничительные условия, налагаемые на вводимые данные и действия, которые могут быть выполнены над данными.
Правило 11 гласит, что язык базы данных должен обеспечивать возможность работы с распределенными данными, расположенными на других компьютерных системах.
Правило 12 предотвращает использование других возможностей для работы с базой данных, помимо языка базы данных, поскольку это может нарушить ее целостность.
В соответствии с рассмотренной ранее трехуровневой архитектурой мы сталкиваемся с понятием модели данных по отношению к каждому уровню. И действительно, физическая модель данных оперирует категориями, касающимися организации внешней памяти и структур хранения, используемых в данной операционной среде. В настоящий момент в качестве физических моделей используются различные методы размещения данных, основанные на файловых структурах. Кроме того, современные СУБД широко используют страничную организацию данных. Физические модели данных, основанные на страничной организации, являются наиболее перспективными.
Наибольший интерес вызывают модели данных, используемые на концептуальном уровне. По отношению к ним внешние модели называются подсхемами и используют те же абстрактные категории, что и концептуальные модели данных.
Кроме трех рассмотренных уровней абстракции при проектировании БД существует еще один уровень, предшествующий им. Модель этого уровня должна выражать информацию о предметной области в виде, независимом от используемой СУБД. Эти модели называются инфологическими, или семантическими, и отражают в естественной и удобной для разработчиков и других пользователей форме информационно-логический уровень абстрагирования, связанный с фиксацией и описанием объектов предметной области, их свойств и их взаимосвязей.
Инфологические модели данных используются на ранних стадиях проектирования для описания структур данных в процессе разработки приложения, а даталогические модели уже поддерживаются конкретной СУБД.
Документальные модели данных соответствуют представлению о слабоструктурированной информации, ориентированной в основном на свободные форматы документов, текстов на естественном языке.
Тезаурусные модели основаны на принципе организации словарей, содержат определенные языковые конструкции и принципы их взаимодействия в заданной грамматике. Эти модели эффективно используются в системах-переводчиках, особенно многоязыковых переводчиках. Принцип хранения информации в этих системах и подчиняется тезаурусным моделям.
Дескрипторные модели — самые простые из документальных моделей, они широко использовались на ранних стадиях использования документальных баз данных. В этих моделях каждому документу соответствовал дескриптор — описатель. Этот дескриптор имел жесткую структуру и описывал документ в соответствии с теми характеристиками, которые требуются для работы с документами в разрабатываемой документальной БД. Например, для БД, содержащей описание патентов, дескриптор содержал название области, к которой относился патент, номер патента, дату выдачи патента и еще ряд ключевых параметров, которые заполнялись для каждого патента. Обработка информации в таких базах данных велась исключительно по дескрипторам, то есть по тем параметрам, которые характеризовали патент, а не по самому тексту патента.
Теоретико-графовые модели данных
Модели данных отражают совокупность объектов реального мира в виде графа взаимосвязанных информационных объектов. В зависимости от типа графа выделяют иерархическую или сетевую модели. Исторически эти модели появились раньше, и в настоящий момент они используются реже, чем более современная реляционная модель данных. Однако до сих пор существуют системы, работающие на основе этих моделей, а одна из концепций развития объектно-ориентированных баз данных предполагает объединение принципов сетевой модели с концепцией реляционной.
Иерархическая модель данных
Появление иерархической модели связано с тем, что в реальном мире очень многие связи соответствуют иерархии, когда один объект выступает как родительский, а с ним может быть связано множество подчиненных объектов. Иерархия проста и естественна в отображении взаимосвязи между классами объектов.
Основными информационными единицами в иерархической модели являются: база данных (БД), сегмент и поле. Поле данных определяется как минимальная, неделимая единица данных, доступная пользователю с помощью СУБД. Например, если в задачах требуется печатать в документах адрес клиента, но не требуется дополнительного анализа полного адреса, то есть города, улицы, дома, квартиры, то мы можем принять весь адрес за элемент данных, и он будет храниться полностью, а пользователь сможет получить его только как полную строку символов из БД. Если же в наших задачах существует анализ частей, составляющих адрес, например города, где расположен клиент, то нам необходимо выделить город как отдельный элемент данных, только в этом случае пользователь может получить к нему доступ и выполнить, например, запрос на поиск всех клиентов, которые проживают в конкретном городе, например в Париже. Однако если пользователю понадобится и полный адрес клиента, то остальную информацию по адресу также необходимо хранить в отдельном поле, которое может быть названо, например, Сокращенный адрес. В этом случае для каждого клиента в БД хранится как Город, так и Сокращенный адрес.
Сегмент в терминологии Американской Ассоциации по базам данных называется записью, при этом в рамках иерархической модели определяются два понятия: тип сегмента или тип записи и экземпляр сегмента или экземпляр записи.
Тип сегмента — это поименованная совокупность типов элементов данных, в него входящих. Экземпляр сегмента образуется из конкретных значений полей или элементов данных, в него входящих. Каждый тип сегмента в рамках иерархической модели образует некоторый набор однородных записей. Для возможности различия отдельных записей в данном наборе каждый тип сегмента должен иметь ключ или набор ключевых атрибутов (полей, элементов данных). Ключом называется набор элементов данных, однозначно идентифицирующих экземпляр сегмента. Например, рассматривая тип сегмента, описывающий сотрудника организации, мы должны выделить те характеристики сотрудника, которые могут его однозначно идентифицировать в рамках БД предприятия. Если предположить, что на предприятии могут работать однофамильцы, то, вероятно, наиболее надежным будет идентифицировать сотрудника по его табельному номеру. Однако если мы будем строить БД, содержащую описание множества граждан, например нашей страны, то, скорее всего, нам придется в качестве ключа выбрать совокупность полей, отражающих его паспортные данные.
В иерархической модели сегменты объединяются в ориентированный древовидный граф. При этом полагают, что направленные ребра графа отражают иерархические связи между сегментами: каждому экземпляру сегмента, стоящему выше по иерархии и соединенному с данным типом сегмента, соответствует несколько (множество) экземпляров данного (подчиненного) типа сегмента. Тип сегмента, находящийся на более высоком уровне иерархии, называется логически исходным по отношению к типам сегментов, соединенным с данным направленными иерархическими ребрами, которые в свою очередь называются логически подчиненными по отношению к этому типу сегмента. Иногда исходные сегменты называют сегментами-предками, а подчиненные сегменты называют сегментами-потомками.